盘古 22 开发板(MES22GP) 硬件使用手册 V1.0

紫光同创 logos 系列 FPGA 开发平台 版本日期: 2022-11-24

版本记录

日期	版本	修改原因
2022.11.24	V1.0	创建文档

1	开发机	反简介		2
	1.1	概述		2
	1.2	开发系	统简介	2
		1.2.1	系统资源	2
			板卡尺寸	
2	接口抗	描述		7
	2.1	电源时	钟及加载	7
		2.1.1	电源	7
		2.1.2	时钟	8
		2.1.3	上电 IO Status	9
		2.1.4 J	TAG 接口	9
	2.2	Memory	y1	0
		2.2.1 I	DDR31	0
		2.2.2 (QSPI Flash1	2
		2.2.3 S	SD card 接口1	3
	2.3	外接通	這信口1	4
		2.3.1	网口1	4
		2.3.2 P	PMOD 接口1	5
		2.3.3	扩展 IO 接口1	7
		2.3.4	串口1	7
	2.4	HDMI.	1	9
		2.4.1 F		9
		2.4.2 H	HDMI 输出接口2	1
	2.5	按键开	· 关及指示灯	2
		2.5.1	按键2	2
		2.5.2 L	Led 灯2.	4
		2.5.3	数码管2	5
		2.5.4	拨动开关2	6

1 开发板简介

1.1 概述

MES22GP 开发板是 MEYESEMI 基于多年在 FPGA 领域开发经验,及多个业务场景的应用特点,而开发的一套全新的国产 FPGA 开发套件,MES22GP 开发板 采用 紫 光 同 创 40nm 工 艺 的 FPGA 作为 主 控 芯 片 (logos 系 列 : PGL22G-MBG324),板卡电源采用圣邦微(SGM61032)解决方案,HDMI 接口采用宏晶微 MS7200,更大程度上实现了国产化,预留 HDMI 收发接口用于图像验证及处理;10/100/1000M 以太网接口,方便各类高速通信系统验证。

图 1.1 MES22GP 开发板

1.2 开发系统简介

1.2.1 系统资源

MES22GP 开发板是基于紫光同创公司的 logos 系列的 PGL22G 芯片设计的一套开发套件,FPGA 封装选用 MBG324。 MES22GP 上在 FPGA 上挂载了一片 16bit 数据位宽的 DDR3,一片 DDR3 的总容量高达 512Mbit,整个系统的存储带宽高达 800Mb/s,充分满足了高速数据的缓存处理需求。

MES22GP 开发板上还扩展了丰富的外围接口,其中包含了一路光纤通信模块接口、一路扩展的差分 40PIN IO 接口、一路千兆以太网接口、一路 HDMI 输入接口、一路 HDMI 输出接口、两路 PMOD(Camera)2*6 PIN 接口、一路 SD 卡接口、一路 Uart 接口和 8 个按键、8 个拨动开关、8 个 LED 灯以及一个数码管。

下图为整个开发系统的功能接口框图:

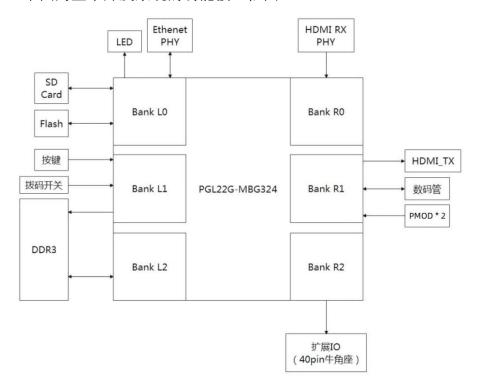


图 1.2 MES22GP 开发板系统功能结构框图

上图中板卡提供的功能详细情况如下:

O Pango® PGL22G-MBG324

Logos 器件产品型号的命名含义如下:

图 1.3 Logos2 系列器件命名规则

PGL22G 的主要参数如下表:

表 1.1 PGL22G-MBG324 的主要参数

名称	具体参数
触发器(FF)	26304
查找表 LUT5	17536
等效 LUT4	21043
DRM(18Kbits)个数	48
APM 单元(乘法器)	30
模数转换/ADC	1
速度等级	-6
温度等级	工业级

◎ 存储

- 512MB (MT41K256M16 * 1)
- 128 Mb QSPI Flash (MES 开发板默认启动方式)

◎ 时钟

- 27MHz 单端有源晶振
- 50MHz 单端有源晶振

◎ 外设接口

• POMD接口*2

12针 2.54mm 间距的双排弯针母座,一个座子有 4 对差分信号,两个共 8 对差分信号,以及输出 3.3V 电源。

• 10/100/1000 Mbps 以太网 * 1

千兆以太网接口芯片采用 RTL8211E 以太网 PHY 芯片为用户提供网络通信服务。RTL8211E 芯片支持 10/100/1000 Mbps 网络传输速率; 全双工和自适应。

- HDMI 输出 * 1
 - 从 IO 引脚引出至 HDMI 座子。
- HDMI 输入 * 1

选用了国产宏晶微公司的 MS7200 HMDI 接收芯片,兼容 HDMI1.4b 及 HDMI 1.4b 下标准视频的 3D 传输格式。支持的最高分辨率高达 4K@30Hz,最高采样率达到 300MHz;支持 HBR 音频。

• 扩展 IO 接口 *1

40 针 2.54mm 间距的双排简牛座,含 17 组 LVDS 信号与其中有 2 路可作为差分时钟信号,以及含有 3.3V,5V 输出电源;

• USB 转串口 *1

用于和电脑通信,方便用户调试。串口芯片采用 Silicon Labs 的 USB-UAR 芯片: CP2102, USB 接口采用 USB Type C 接口。

 Micro SD 卡座 支持 SDIO 模式和 SPI 模式。

• JTAG 接口

14 针 2.54mm 间距的双排排针口,用于 FPGA 程序的下载和调试;

- 用户 LED 8 个用户发光二极管:
- 用户按键

8个用户按键,1个复位按键;

- 用户拨动开关 8个用户拨动开关;
- 数码管

1个四位发光数码管;

1.2.2 板卡尺寸

MES22GP 开发板的板卡尺寸如下图;

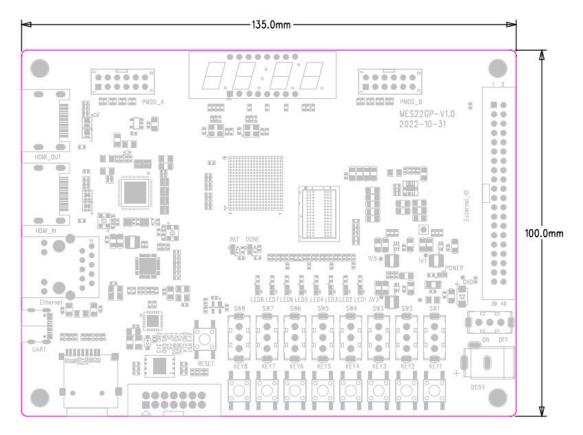


图 1.5 MES22GP 开发板尺寸图

2 接口描述

2.1 电源时钟及加载

2.1.1 电源

MES22GP 开发板的主要电源共有 3 路,电源外部输入支持 5V。系统的电源 网络如下图:

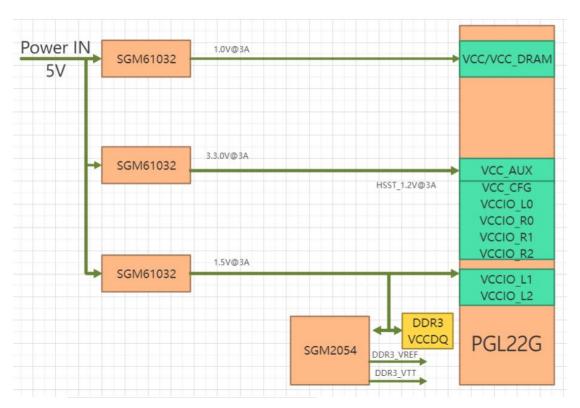


图 2.1 电源拓扑图

各个电源的功能作用如下表:

表 2.1 各路电源功能

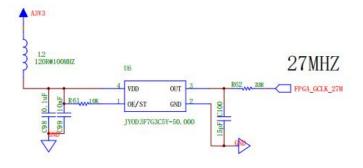
电源	功能用途	
5.0V	低电压 DC-DC 的电源,HDMI 接口 5V	
1.1V	PGL22G 的内核电压	
3.3V	I/O 电压,部分接口(以太网,数码管,LED灯,开关,	
	FLASH, SD card)供电电压	
1.5V	DDR3 供电电压,PGL22G Bank L1、Bank L2 电源	
VTT(0.75V)	DDR3 控制线与地址线的上拉电压,保持信号完整性	
VREF(0.75V)	DDR3 参考电压	

MES22GP 开发板外部电源的输入电压为 DC5V, 板上有一个上电开关, 在 DC 座旁边。拨码往左拨给板子上电, 右拨给板子掉电。注: TYPE-C 方口只能 当串口使用, 不能作为供电接口;



图 2.2 电源输入接口实物图

2.1.2 时钟


MES22GP 板上配有 2 个有源单端晶振给 PGL22G 提供时钟,有源单端晶振频率分别为 50MHz 和 27MHz,均可用作 FPGA 的系统运行主时钟的时钟源。

具体管脚分配请看下表:

信号	PGL22G Pin
FPGA_GCLK_27M	J18
FPGA_GCLK_50M	H18

表 2.2 单端有源晶振

下图为有源单端晶振电路,这两个时钟是给 FPGA 内部的逻辑提供输入时钟,可用于逻辑设计或是通过 PLL 来产生不同频率的时钟。

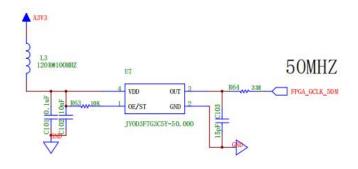


图 2.3 有源单端晶振电路

2.1.3 上电 IO Status

在 Logos 器件上有一个功能复用 IO,控制从上电完成后到进入用户模式之前中所有用户 IO 的弱上拉电阻是否使能。此管脚在配置之前或是配置过程中,该引脚不允许悬空,此 IO 在上电后的对应功能如下:

- (1) "0", 使能所有用户 IO 内部上拉电阻。
- (2) "1",不使能所有用户 IO 内部上拉电阻。

MES22GP 将此管脚的功能默认接 GND,用户可根据需求,自行焊接电阻选择上电后初始的 IO 状态;

功能电路如下:

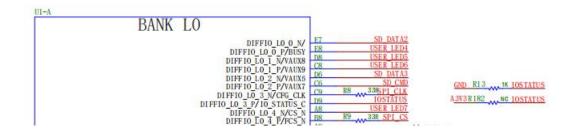


图 2.4 IO Status 配置电路

2.1.4 JTAG 接口

MES22GP 开发板预留了一个 JTAG 接口,用于下载 FPGA 程序或者固化程序到 FLASH。

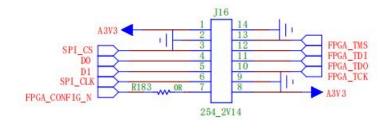


图 2.5 JTAG 接口电路

此 14pin 接口还连接到了板上的 QSPI Flash 上,通过对 FPGA_CONFIG_N 拉低,使 PGL22G 进入复位状态,释放出 QSPI Flash 的操控权限,这时我们可以通过这个接口直接烧录 Flash;

2.2 Memory

2.2.1 DDR3

MES22GP 开发板上有一片 Micron 的 DDR3(MT41K256M16 TW107: P)内存组件,拥有 16bit 位宽的存储空间。DDR3 DRAM 的硬件连接示意图如图 2.2 所示:

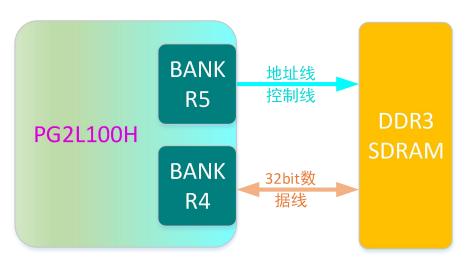


图 2.6 MES22GP 的 DDR3 连接图

PGL22G 内可运行 DDR 控制器最大支持位宽可达 72bit, 速度高达 533MHz (1066Mbps)。DDR3 使用 1.5V SSTL 接口标准,在 MES22GP 开发板上 PGL22G 与 DDR3 紧密的排列在一起,保持连接和匹配。

DDR3 布线采用 50 欧姆走线阻抗用于单端信号,DCI 电阻(VRP/VRN)以及差分时钟设置为 100 欧姆。每个 DDR3 芯片在 ZQ 上都需要 240 欧姆电阻下拉。DDR-VDDQ 设置为 1.5V,以支持所选的 DDR3 器件。DDR-VTT 是与

DDR-VDDQ 始终电压跟随,保持为 $\frac{1}{2}$ 倍 DDR-VDDQ 的电压值。DDR-VREF 是一个独立的缓冲输出,等于 $\frac{1}{2}$ 倍 DDR-VDDQ 的电压。DDR-VREF 是隔离的,可为 DDR 电平转换提供更清晰的参考。

该 DDR3 存储系统直接连接到了 PGL22G 的 Bank R4 及 Bank R5 上; DDR3 的硬件设计需要严格考虑信号完整性,我们在电路设计和 PCB 设计的时候已经充分考虑了匹配电阻/终端电阻,走线阻抗控制,走线等长控制,保证 DDR3 的高速稳定的工作。

DDR3 的具体管脚分配如下:

表 2.3 PGL22G 上的 DDR3 连接引脚分配表

信号名称	PGL22G		信号名称	PGL22G
旧与石柳	管脚			管脚
ddr3_addr[0]	M4		ddr3_addr[14]	J2
ddr3_addr[1]	M3		ddr3_addr[15]	J1
ddr3_addr[2]	P2		ddr3_ba[0]	U2
ddr3_addr[3]	P1		ddr3_ba[1]	U1
ddr3_addr[4]	L5		ddr3_ba[2]	T2
ddr3_addr[5]	M5		ddr3_cas_n	T1
ddr3_addr[6]	N2		ddr3_ck_n	V3
ddr3_addr[7]	N1		ddr3_ck_p	U3
ddr3_addr[8]	K4		ddr3_cke	L4
ddr3_addr[9]	M1		ddr3_cs_n	R1
ddr3_addr[10]	M6		ddr3_odt	V2
ddr3_addr[11]	L1		ddr3_ras_n	R2
ddr3_addr[12]	K2		ddr3_reset_n	M2
ddr3_addr[13]	K1		ddr3_we_n	V1
ddr3_dm[0]	R8		ddr3_dm[1]	U5
ddr3_dq[0]	Т8		ddr3_dq[8]	T4
ddr3_dq[1]	Т6		ddr3_dq[9]	V9

ddr3_dq[2]	R6	ddr3_dq[10]	U9
ddr3_dq[3]	R9	ddr3_dq[11]	V7
ddr3_dq[4]	Т9	ddr3_dq[12]	U7
ddr3_dq[5]	N4	ddr3_dq[13]	V6
ddr3_dq[6]	N5	ddr3_dq[14]	U6
ddr3_dq[7]	P6	ddr3_dq[15]	V5
ddr3_dqs_n[0]	N7	ddr3_dqs_p[1] U8
ddr3_dqs_p[0]	N6	ddr3_dqs_n[1] V8

2.2.2 QSPI Flash

MES22GP 开发板具有 4 位 SPI(QSPI)串行 Nor 闪存,使用的是兆易创新的 GD25Q128E。连接在 PGL22G 的特定引脚上,采用 3.3V 电平标准。

QSPI 的电路连接如下:

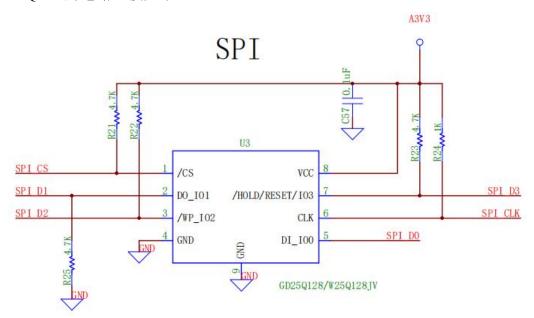


图 2.7 Flash 电路图

管脚分配如下

表 2.4 QSPI Flash 引脚图

信号	描述	PGL22G Pin	QSPI Pin
CS	片选	В8	1
DQ0	数据位 0	B4	5
DQ1	数据位1	A4	2
DQ2	数据位 2	В3	3
DQ3	数据位3	A3	7
SCK	串行数据时钟	С9	6

2.2.3 SD card 接口

SD 卡是现在非常常用的存储设备,我们扩展出来的 SD 卡,支持 SPI 模式和 SD 模式,使用的 SD 卡为 MicroSD 卡。原理图如下图所示。SD 卡是 3.3V接口。

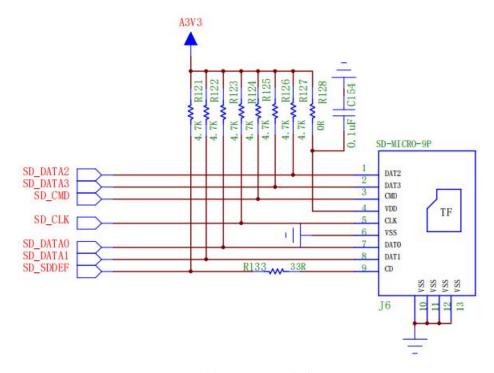


图 2.8 SDCARD 电路

表 2.5 SDCARD 引脚示例

信号	描述	PGL22G Pin	SD Card Pin
CLK	时钟	A5	5
CMD	命令串行线	C6	3
DATA[0:3]	数据线	D0: B6	7
		D1: A6	8
		D2: C17	1
		D3: E7	2
DETECT	卡识别	В7	9

2.3 外接通信口

2.3.1 図口

MES22GP 开发板使用 Realtek RTL8211E PHY 实现了一个 10/100/1000 以太 网端口,用于网络连接。该器件工作电压为支持 2.5V、3.3V。PHY 连接到 BANK R3,并通过 RGMII 接口连接到 PGL22G。RJ-45 连接器是 HFJ11-1G01E-L12RL,具有集成的自动缠绕磁性元件,可提高性能,质量和可靠性。RJ-45 有两个状态 指示灯 LED,用于指示流量和有效链路状态。

下图显示了 MES22GP 开发板上的网口连接框图。

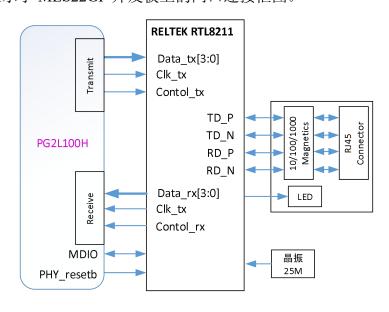


图 2.9 RTL8211 连接示例

下表显示了 PGL22G 与 RTL8211E 的管脚连接。

表 2.6 PGL22G 连接 RTL8211 引脚情况

信号名称	描述	PGL22G 管脚	RTL8211E Pin
RX_CLK	接收时钟线	B5	40
RX_CTRL	接收控制线	G4	37
RXD[3]	接收数据线 3	D1	38
RXD[2]	接收数据线 2	E2	39
RXD[1]	接收数据线 1	E1	41
RXD[0]	接收数据线 0	F4	42
TX_CLK	发送时钟线	D2	47
TX_CTRL	发送控制线	D4	2
TXD[3]	发送数据线3	B2	44
TXD[2]	发送数据线 2	B1	45
TXD[1]	发送数据线 1	C2	48
TXD[0]	发送数据线 0	C1	1
MDC	控制总线时钟	A1	5
MDIO	控制总线数据	A2	4
RSTN	复位控制线,低有效	重加载固件按 键	29

2.3.2 PMOD 接口

MES22GP 板上有 2 路 PMOD 接口, 2 路接口分别跟 FPGA 的 差分信号管脚相连接,用户可根据需求运用此两路接口功能。

PMOD 原理图如下图所示:

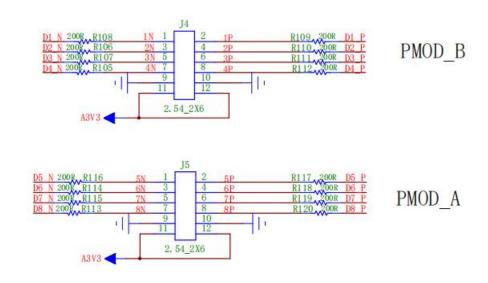


图 2.10 PMOD 连接器

下表显示了 PGL22G 与 2 个 PMOD 接口的管脚连接。

表 2.7 PGL22G 引脚分配情况

信号名称	描述	PGL22G 管脚
D1_N	差分 IO	K17
D1_P	差分 IO	K18
D2_N	差分 IO	L17
D2_P	差分 IO	L18
D3_N	差分 IO	M17
D3_P	差分 IO	M18
D4_N	差分 IO	N17
D4_P	差分 IO	N18
D5_N	差分 IO	L14
D5_P	差分 IO	L15
D6_N	差分 IO	K15
D6_P	差分 IO	K14
D7_N	差分 IO	J16
D7_P	差分 IO	H16
D8_N	差分 IO	G17
D8_P	差分 IO	G18

2.3.3 扩展 IO 接口

MES22GP 板上通过 1 个 2*20 PIN 简牛座连出了 17 对差分信号,其中有两队是差分时钟引脚,用户可自定义扩展 IO 的应用接口;

下表显示了 PGL22G 与 40 PIN 扩展 IO 的管脚连接。

表 2.8 PGL22G 引脚分配情况

信号名称	描述	PGL22G 管脚
EX_IO_1N	差分 IO	T10
EX_IO_1P	差分 IO	R10
EX_IO_2N	差分 IO	V10
EX_IO_2P	差分 IO	U10
EX_IO_3N	差分 IO	V13
EX_IO_3P	差分 IO	U13
EX_IO_4N	差分 IO	V12
EX_IO_4P	差分 IO	U12
EX_IO_5N	差分 IO	V11
EX_IO_5P	差分 IO	U11
EX_IO_6N	差分 IO	T11
EX_IO_6P	差分 IO	R11
EX_IO_7N	差分 IO,可作时钟信号	T17
EX_IO_7P	差分 IO,可作时钟信号	T18
EX_IO_8N	差分 IO,可作时钟信号	R18
EX_IO_8P	差分 IO,可作时钟信号	R17
EX_IO_9N	差分 IO	U17
EX_IO_9P	差分 IO	U18
EX_IO_10N	差分 IO	V17
EX_IO_10P	差分 IO	V18
EX_IO_11N	差分 IO	P18
EX_IO_11P	差分 IO	P17
EX_IO_12N	差分 IO	T16

差分 IO	R16
差分 IO	V14
差分 IO	U14
差分 IO	V15
差分 IO	U15
差分 IO	U16
差分 IO	V16
差分 IO	R15
差分 IO	R14
差分 IO	T13
差分 IO	R13
	差分 IO 差分 IO 差分 IO 差分 IO 差分 IO 差分 IO 差分 IO 差分 IO

2.3.4 串口

MES22GP 开发板上集成了一路 USB 转串口模块,采用的 USB-UART 芯片是 CP2102, USB 接口采用 USB Type C 接口,可以用一根 USB Type C 线将它连接到上 PC 的 USB 口进行串口数据通信。

USB Uart 电路设计的示意图如下图所示:

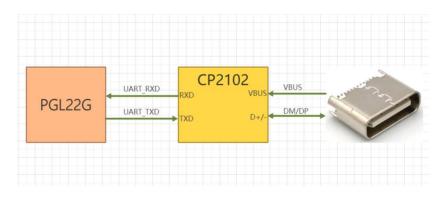


图 2.11 USB-UART 原理框图

表 2.9 UART 引脚

信号	描述	PGL22G
FPGA_UART_TXD	Uart 数据输出	F11
FPGA_UART_RXD	Uart 数据输入	G11

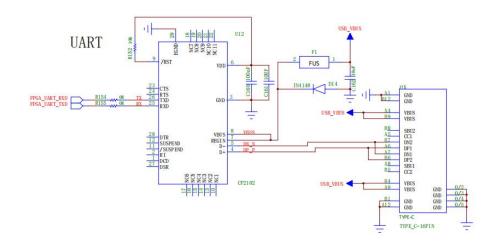


图 2.12 USB-UART 电路

2.4 HDMI

2.4.1 HDMI 输入接口

HDMI 输入接口的实现,选用了国产宏晶微公司的 MS7200 HMDI 接收芯片, 兼容 HDMI1.4b 及 HDMI 1.4b 下标准视频的 3D 传输格式。支持的最高分辨率高达 4K@30Hz,最高采样率达到 300MHz; MS7200 支持 YUV 和 RGB 之间的色彩空间转换,数字接口支持 YUV 及 RGB 格式输出;

MS7200 支持通过 IIS 总线或 SPDIF 传输高清音频,同时还支持高比特音频 (HBR) 音频,在 HBR 模式下,音频采样率最高为 768KHz。

其中, MS7200 的 IIC 配置接口与 FPGA 的 IO 相连, 通过 FPGA 的编程 来对 MS7200 进行初始化和控制操作, MES22GP 开发板上将 MS7200 的 SA 管 脚下拉到地, 故 IIC 的 ID 地址为 0x56;

HDMI 输入接口的硬件连接如下图所示。

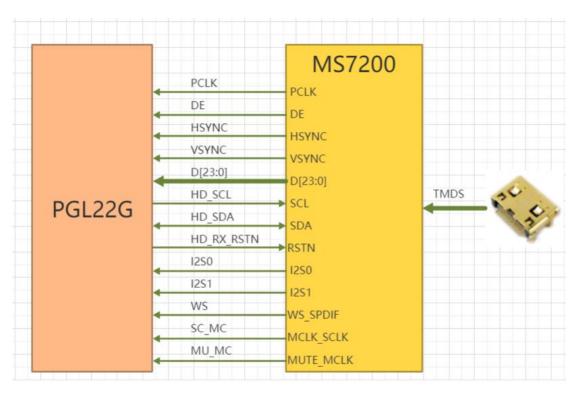


图 2.13 HDMI Receiver 连接示意图

具体管脚分配请看下表:

表 2.10 HDMI 管脚分配

信号	功能描述	PGL22G Pin
HD_RX_PCLK	HDMI 显示图像像素时钟	A16
HD_RX_VS	HDMI 显示图像帧同步信号	A18
HD_RX_HS	HDMI 显示图像行同步信号	B18
HD_RX_DE	HDMI 显示图像有效像素点使能信号	C18
HD_RX_D0	HDMI 显示图像像素点数据位[0]	D18
HD_RX_D1	HDMI 显示图像像素点数据位[1]	E18
HD_RX_D2	HDMI 显示图像像素点数据位[2]	A17
HD_RX_D3	HDMI 显示图像像素点数据位[3]	B17
HD_RX_D4	HDMI 显示图像像素点数据位[4]	C17
HD_RX_D5	HDMI 显示图像像素点数据位[5]	E15
HD_RX_D6	HDMI 显示图像像素点数据位[6]	A15
HD_RX_D7	HDMI 显示图像像素点数据位[7]	B15
HD_RX_D8	HDMI 显示图像像素点数据位[8]	C15

HD_RX_D9	HDMI 显示图像像素点数据位[9]	G12
HD_RX_D10	HDMI 显示图像像素点数据位[10]	D15
HD_RX_D11	HDMI 显示图像像素点数据位[11]	A14
HD_RX_D12	HDMI 显示图像像素点数据位[12]	B14
HD_RX_D13	HDMI 显示图像像素点数据位[13]	A13
HD_RX_D14	HDMI 显示图像像素点数据位[14]	B13
HD_RX_D15	HDMI 显示图像像素点数据位[15]	C13
HD_RX_D16	HDMI 显示图像像素点数据位[16]	D13
HD_RX_D17	HDMI 显示图像像素点数据位[17]	A12
HD_RX_D18	HDMI 显示图像像素点数据位[18]	B12
HD_RX_D19	HDMI 显示图像像素点数据位[19]	E11
HD_RX_D20	HDMI 显示图像像素点数据位[20]	F12
HD_RX_D21	HDMI 显示图像像素点数据位[21]	A11
HD_RX_D22	HDMI 显示图像像素点数据位[22]	B11
HD_RX_D23	HDMI 显示图像像素点数据位[23]	C11
HD_SCL	MS7200 控制通道 IIC 的时钟信号	E17
HD_SDA	MS7200 控制通道 IIC 的数据信号	D17
HD_RX_SC_MC	MS7200 音频通道 I2S 的串行时钟信号	A10
IID DV MII MC	MS7200 音频通道 I2S 的主时钟信号或	D10
HD_RX_MU_MC	Mute 信号	D10
HD_RX_I2S1	MS7200 音频通道 I2S 的数据通道 1	B10
HD_RX_I2S0	MS7200 音频通道 I2S 的数据通道 0	C10
HD_RX_WS_SP	MS7200 音频通道 I2S 的位时钟	D11
HD_RX_RSTN	MS7200 硬件复位信号,低电平有效	E16

2.4.2 HDMI 输出接口

HDMI 输出接口的硬件连接如下图所示。

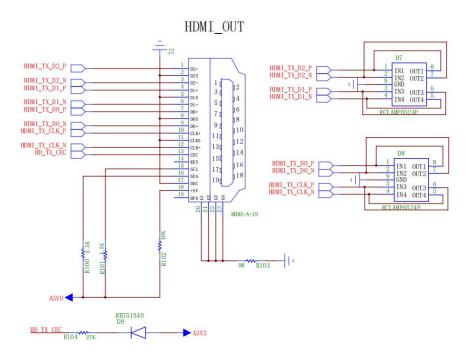
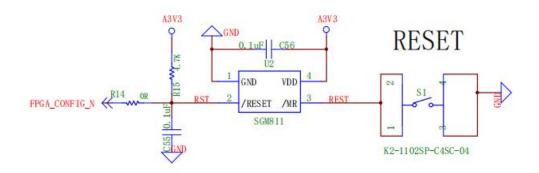


图 2.14 HDMI 输出原理图

具体管脚分配请看下表:


表 2.11 HDMI 管脚分配

信号	功能描述	PGL22G Pin
HDMI_TX_D0_P	HDMI 显示图像像素时钟	F16
HDMI_TX_D0_N	HDMI 显示图像帧同步信号	G16
HDMI_TX_D1_P	HDMI 显示图像行同步信号	F14
HDMI_TX_D1_N	HDMI 显示图像有效像素点使能信号	F13
HDMI_TX_D2_P	HDMI 显示图像像素点数据位[0]	G14
HDMI_TX_D2_N	HDMI 显示图像像素点数据位[1]	G13
HDMI_TX_CLK_P	HDMI 显示图像像素点数据位[2]	F18
HDMI_TX_CLK_N	HDMI 显示图像像素点数据位[3]	F17

2.5 按键开关及指示灯

2.5.1 按键

MES22GP 开发板提供了 8 个用户按键 (K1~8); 1 个重加载复位按键,重加载按键通过一个延时复位芯片连接到 PGL22G 的 RSTN 管脚; 8 个用户按键都连接到 PGL22G 的普通 IO 上,按键低电平有效,但按键按下时,IO 上的输入电压为低; 当没有按下按键时,IO 上的输入电压为高电平;

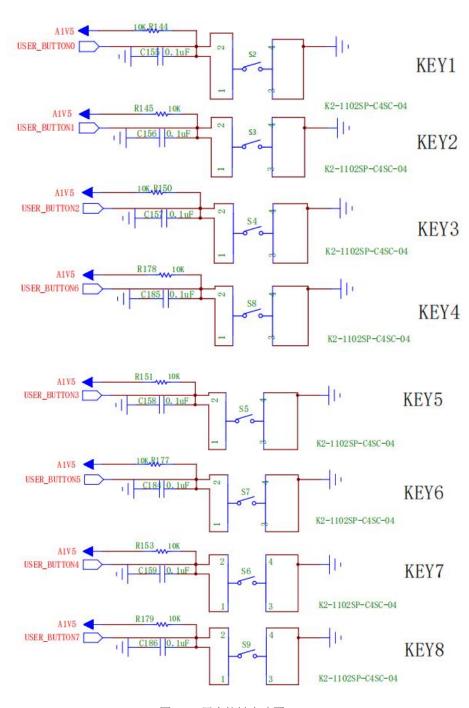


图 2.15 用户按键电路图

具体管脚分配如下;

表 2.12 按键管脚分配

信号	PGL22G Pin
REST	重新加载固件按键
KEY1	Ј3
KEY2	H1
KEY3	Н3
KEY4	F1
KEY5	Н5
KEY6	G3
KEY7	G1
KEY8	F3

2.5.2 Led 灯

MES22GP 开发板有 11 个翠绿 LED 灯,其中 1 个是电源指示灯 (POWER); 2 个是 FPGA 的运行的状态指示灯: INIT 和 DONE; 8 个是用户 LED 灯 (LED1~8)。连接在 PGL22G BANK L3 的 IO 上,FPGA 输出高电平时对应的 LED 灯亮灯,板上 LED 灯功能电路图:

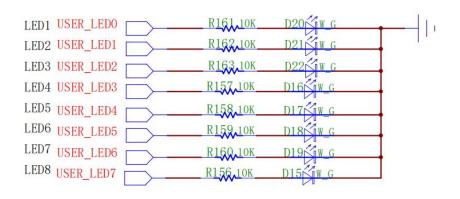


图 2.16 LED 灯电路原理图

具体管脚分配请看下表:

表 2.13 LED 灯

信号	PGL22G Pin
LED1	E5
LED2	E6
LED3	F7
LED4	F8
LED5	E8
LED6	D8
LED7	C8
LED8	A8

2.5.3 数码管

4 位 8 段共阳数码管的管脚及段选原理图如下图:

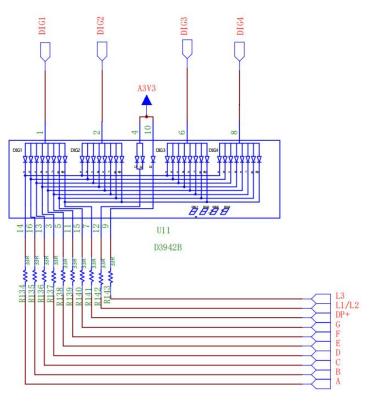


图 2.17 数码管电路原理图

表 2.14 数码管灯

信号	PGL22G Pin	信号	PGL22G Pin
A	J14	DP+	M16
В	H13	L1/L2	N15
С	J15	L3	M13
D	L12	DIG1	H17
Е	L16	DIG2	J17
F	M14	DIG3	L13
G	H14	DIG4	N16

2.5.4 拨动开关

MES22GP 开发板板卡上有 8 个的拨动开关, 电路设计上 IO 默认识别低电平, 拨动开关拨通后为高电平, 电路如下图;

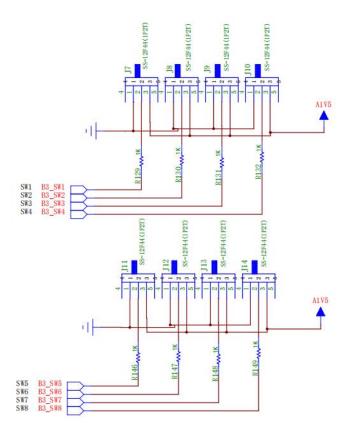


图 2.18 拨动开关原理图

表 2.15 拨动开关

信号	PGL22G Pin
SW1	J5
SW2	H2
SW3	J6
SW4	Н6
SW5	G2
SW6	G5
SW7	F2
SW8	G6