ST810D

双频亚米级定位模块 规格书

Oct, 2023

关于此文档

文档基本信息

适用产品	ST810D
文档类型	数据手册
文档修订版本与日期	V1.0/2023-10
产品信息状态	

产品信息状态说明

原型	文档所涉及的产品信息为最初的目标规格,后期会有修订或信息补充。
样机	文档所涉及的产品信息为样机状态的产品规格,后期会有修订或信息补充。
小批量	文档所涉及的产品信息为小批量状态的产品规格,后期会有修订或信息补充。
量产	文档所涉及的产品信息为量产品规格。

目录

1. 产品概述	5
1.1 产品简介	5
1.2 产品特性	5
1.3 性能指标	6
1.4 GNSS 接收频点	
2. 模块引脚定义	
2.1 引脚分布	
2.2 引脚说明	
3. 电气特性	
3.1 极限条件	
3.2 运行条件	
4 机械规格	
5 参考设计	
5.1 设计注意事项	
5.2 模块复位信号	
5.3 有源天线方案	
5.4 无源天线方案	
5.5 PCB 封装参考	
5.6 LAYOUT 注意事项	
6 包装与处理	
6.1 包装须知	
6.2 存储	
6.3 ESD 处理	
7产品标签与订购信息	
7.1 产品标签	
7.2 订购信息	

1.产品概述

1.1 产品简介

ST810D 是一款高性能的多系统双频亚米级 定位模块,该模块可以实现优化的双频段和多模式信号跟踪。同时其实现了先进的抗多径和抗干扰射频前端,以及对 L1/L5 频段提供多达 8 个抗单音干扰滤波器,显著提高了实际定位和 TTFF 性能。其支持全球所有民用导航卫星系统(包括 BeiDou、GPS、Galileo、GLONASS,及 QZSS)。

ST810D 集成了高效的电源管理架构,为 GNSS 导航应用提供高精度、高灵敏性、低功耗的解决方案,广泛应用于车载导航、电子消费类导航、以及车辆管理等导航领域。

1.2 产品特性

- 支持 BDS、GPS、Galileo、GLONASS、QZSS
- 集成 RTK 实时动态技术
- 最新的低功耗架构设计
- 支持多系统双频高精度原始数据输出,便于第三方集成
- 最具性价比的高精度定位 GNSS 解决方案

表格1ST810D

	GNSS				特色功能				接口			精度			等级									
产品型号	单频 S/双频 D/三频 T	GPS	BDS	GLONASS	Galileo	NavIC	内置 LNA	可编程 (flash)	Data logging	D-GNSS	Raw data	RTK	Oscillator	内置电感	UART	12C	USB	SPI	米级 (m)	亚米级 (Sub-meter)	厘米级 (cm)	工业级	专业级	车规级
ST810D	D	•	•	•	•		•	•	•	•	•		Т	•	•					•		•		

● T= TCXO

1.3 性能指标

表格 2 性能指标

参数	性能指标					
GNSS 追踪通道	200					
	GPS/QZSS: L1C/A, L5					
GNSS 接收频点	BDS: B1, B2A, B2B,B2I					
	Galileo: E1, E5					
	GLONASS: G1					
数据更新率	PVT	默认1Hz,最大值 20Hz				
×311 × 371 1		, , , , , , , , , , , , , , , , , , ,				
	单点定位	1.5m CEP(水平)				
 定位精度 ^[1]		2.5m CEP(垂直)				
速度及时间精度	GNSS	0.1m/s CEP				
	1PPS	20ns(RMS)				
	热启动	1s				
首次定位时间 (TTFF)	冷启动	28s				
,	AGPS	1.5s				
灵敏度	冷启动	-148dBm				
	热启动	-159dBm				
	重捕获	-159dBm				
	跟踪&导航	-165dBm				
	速度	500m/s				
应用极限	高度	50000m				
安全检测	内置天线短路保护,开路检	立 测				
接口	UART	1				

	波特率115200 bps, 8 data bits, no parity, 1 stop bits (默认)						
协议	1Hz: GGA,GSA,GSV,VTG,RMC,GST,GLL						
	主电源电压	3.0V ~ 3.6V					
工作条件	I/O 电压	2.8V ~ 3.6V					
	备用电压	2.8V ~ 3.6V					
	捕获阶段电流均值	35mA ^[4]					
功耗	跟踪阶段电流均值	34mA[5]					
	待机模式	14uA ^[7]					
工作温度	-40°C ~ +85°C						
存储温度	-40°C ~ +85°C						
封装尺寸	10.1mm x 9.7mm x 2.2m	nm 18-pin 邮票孔封装					

[1]测试时需使用高性能外部LNA

[3] RTCM 2.3/2.4x 仅限特殊固件支持

[4] 开阔天空条件下,GPS+QZSS,L1频段,跟踪 16颗卫星,定位成功

[5] 开阔天空条件下,GPS+BDS+QZSS+Galileo+GLONASS,L1+L5 频段,跟踪 32 颗卫星,定位成功

[6] 开阔天空条件下,GPS+BDS+QZSS+ Galileo+GLONASS, L1+L2 频段,跟踪 32 颗卫星,定位成功

[7] RTC模式下待机,由 PRTRG和 RTC超时唤醒

1.4 GNSS 接收频点

表格 3 GNSS 接收频点

产品型号	RF 模式	GPS/QZSS			BDS				GLONASS		Galileo		NavIC				
		L1C/A	L1C	L2C	L5	L6	B1I	B2B	B2I	B2a	B3I	L1	L2	E1	E5	E6	L5
ST810D	L1+ L5	•	-	-		-		•	•	•	-	•	-		•	-	-

2. 模块引脚定义

2.1 引脚分布

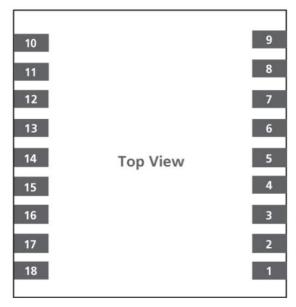


图 2 引脚分布图

2.2 引脚说明

表格 4 引脚定义说明

编号	名称	I/O	描述	电气特性
1	GND	ı	地	
2	TXD	0	导航数据输出	NMEA0183协议,TTL电平
3	RXD	I	交互命令输入	配置命令输入,TTL电平
4	PPS	0	秒脉冲	Time pulse(1PPS),TTL电平
5	NC			悬空
6	V_BAT	I	RTC及SRAM后备电源	提供1.5~3.6V电源以保证 模块热启动
7	NC			悬空
8	VCC	ı	模块电源输入	直流 3.3V

9	nRESET	I	模块复位输入,低电平 有效	上电自复位,建议悬空
10	GND	I	地	
11	RF_IN	I	天线信号输入	注意ESD保护
12	GND	I	地	
13	NC			悬空
14	VCC_RF		有源天线供电	输出3.3V给有源天线供电
15	NC			悬空
16	SDA		I2C SDA	I2C数据信号
17	SCL		I2C SCL	I2C时钟信号
18	NC			悬空

3. 电气特性

3.1 极限条件

表格 5 极限条件

参数	符号	最小值	最大值	单位
模块供电电压(VCC)	Vcc	-0.3	3.6	V
备份电池电压(VBAT)	Vbat	-0.3	3.6	V
最大可承受ESD水平	VESD(HBM)		2000	V
储藏温度		-40	+85	°C

3.2 运行条件

表格 6 工作运行条件

参数	符号	最小值	典型值	最大值	单位
供电电压	Vcc	3.0	3.3	3.6	V
Vcc峰值电流(不包括天线)	Ipeak			60	mA
捕获阶段电流均值			35		mA
跟踪阶段电流均值			34		mA
有源天线输出电压	VCC_RF		3.3		V

ST810D双频RTK定位模块规格书

工作温度	-40	25	+85	°C	
------	-----	----	-----	----	--

4 机械规格

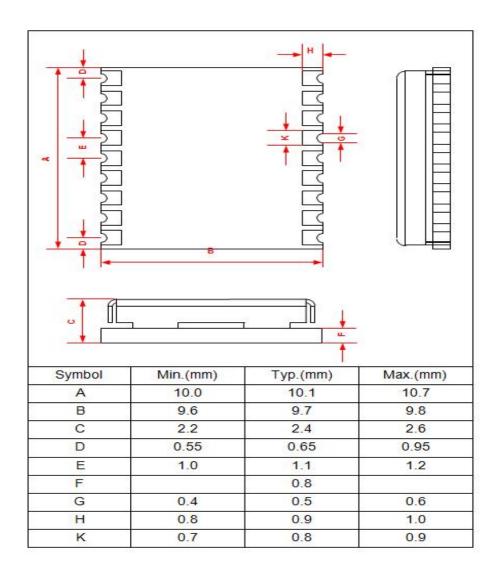


图 3 尺寸图

5 参考设计

5.1 设计注意事项

为使 ST810D模块 能够正常工作,需要正确连接以下信号:

- ✓ 为 VCC引脚提供可靠的电源。
- ✓ 将模块所有 GND 引脚接地。
- ✓ VBAT可接入法拉电容或微电池,确保能提供大于100微安电流,电压大于2伏,且能持续至少2小时.
- ✓ 连接RF IN信号至天线,线路保持50 欧姆阻抗匹配。
- ✓ 确保串口 1连接到PC或外部处理器,用户可以用此串口接收定位信息数据。 软件升级也需要通过该串口进行。

为获得良好性能,设计中还应特别注意如下几项:

- ✓ 供电:良好的性能需要稳定及低纹波电源来保证。电压纹波峰峰值不要超过50mV。
 - 采用LDO保证供电纯净
 - 布局上尽量将LDO靠近模块放置
 - 加宽电源走线或采用分割铺铜面来传输电流
 - 电源走线避免经过大功率与高感抗器件如磁性线圈
- ✓ UART接口:确保主设备与ST810D模块管脚信号、波特率对应一致,波特率115200,与主控芯片电平匹配,如需要电平转换,建议使用电平转换IC。
- ✓ 天线接口: 天线线路注意阻抗匹配, 尽量短且顺畅, 避免走锐角
- ✓ 天线位置:为了保证较好的信噪比,确保天线与电磁辐射源有很好的隔离,特别是1559~ 1620MHz频段的电磁辐射
- ✓ 尽量避免在ST810D正下方走线

本模块是温度敏感设备,温度剧烈变化会导致其性能降低,使用中尽量远离高温气流 与大功率发热器

5.2 模块复位信号

ST810D模块上电后需正确复位方可正常工作,芯片提供自复位功能。为确保有效复位,上电时模块的复位引脚nRESET和供电VCC间需满足以下时序要求。模块正常运行期间拉低nRESET引 脚超过5ms同样可以复位ST810D。

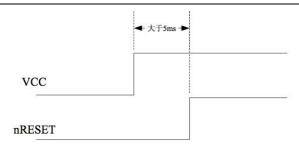


图4 模块复位信号

5.3 有源天线方案

采用+3/3.3 V电源的有源天线使用VCC_RF给天线供电。

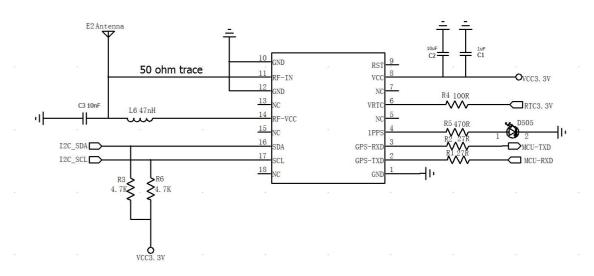


图5 +3/3.3 V有源天线方案

备注: 1.以上为有源天线供电,兼容带天线检测功能

5.4 无源天线方案

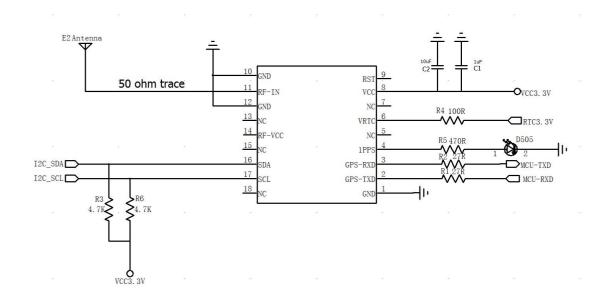


图6 无源天线方案

5.5 PCB 封装参考

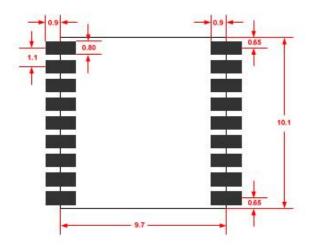
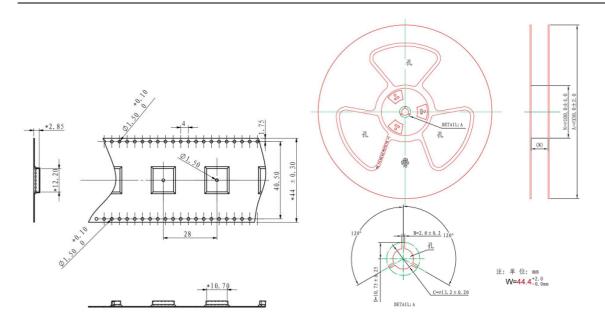


图 7 ST810D 封装参考

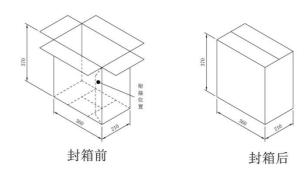
5.6 LAYOUT 注意事项

为充分发挥 ST810D 的优势性能,使用本模块时需注意以下事项:

- 1) 就近模组电源管脚放置去耦电容,并保证电源走线宽度在 0.5mm 以上;
- 2) 建议模组 RF 端口到天线接口处的射频走线宽度大于 0.2mm, 并尽可能就近放置; 射频部分走线采用共面波导阻抗模型, 走线到地铜皮之间控制在 1 倍左右的间距, 保证阻抗为 50Ω;
- 3) 建议模组 RF 端口到天线接口处的走线参考第二层地,并保证第二层地平面完整;
- 4) 切勿将模块放置在干扰源附近,如通信天线、晶振、大电感以及高频数字信号线附近,并且模块底部全部以地线填充为佳。


6 包装与处理

6.1 包装须知


ST810D GNSS定位模块是湿度、静电均敏感设备。在产品的包装和运输过程中,请务必遵循相关处理要求,并采取相应的预防措施以减少产品损坏。下表展示了产品运输的标准包装结构。

模块使用卷盘装, 1个内包装盒MPQ为1K, 1个外包装盒包含3个内包装盒, MOQ数量为3K。

载带尺寸如下:

外箱尺寸如下:

注意:本包装信息不适用于非标准数量的订单。非标准数量的订单包装信息此处不作赘述,请以实际收发为参考。

6.2 存储

为防止产品受潮和静电放电,产品密封包装袋内附有干燥剂和湿度指示卡,用户可通过湿度指示卡了解产品所处环境的湿度状况。

6.3 ESD 处理

6.3.1 ESD 注意事项

16

ST810D GNSS 定位模块包含高度敏感的电子线路,属于静电敏感器件 (ESD)。请注意以下操作事项,若未按照下述预防措施操作,可能会对模块造成严重损坏!

- 天线贴片前,请先接地。
- 在引出 RF 引脚时,请不要接触任何带电电容和其他器件(例如,天线贴片~10pF;同轴电缆~50
 - 80pF/m; 焊接烙铁)
- 为防止静电放电,请勿将天线区域暴露在外;若因设计原因暴露在外,请采取适当的 ESD 防护措施。
- 在焊接 RF 连接器和天线贴片时,请使用 ESD 安全烙铁。

6.3.2 ESD 防护措施

GNSS 定位模块为静电敏感器件。在操作使用本模块时,必须特别小心,以减少静电危险。除了标准的 ESD 安全措施外,还需考虑如下措施:

- 在射频输入部分加入 ESD 二极管, 防止静电放电
- 切勿触摸任何暴露的天线区域
- 将 ESD 二极管添加到 UART 接口

6.3.3 湿敏等级

本 GNSS 定位模块的湿敏等级为 MSL4。拆除包装塑封后放置超过72Hr后必须烘烤干燥后才能焊接使用。烘烤温度不超80摄氏度,时间不短于4Hr。

6.3.4 回流焊要求

表格 10 回流焊要求

预热阶段	温度上升速率	小于3℃/s
	预热结束温度	150 - 160℃
恒温阶段	温度上升速率	(150℃-183℃区间)小于0.3℃/s;
	温度上升速率	(183℃-217℃区间)小于3.5℃/s
	恒温时间	60 – 120 seconds

ST810D双频RTK定位模块规格书

	恒温结束温度	217°C
熔锡阶段	熔锡时间	40-60 seconds
	峰值温度	245°C
冷却阶段	温度下降速率	不高于4°C / s

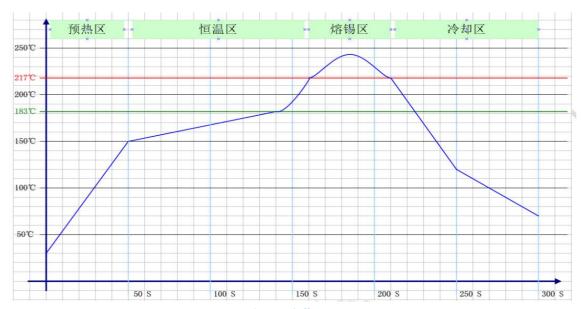


图10 回流焊温度曲线